Hybrid 3D Printing of Soft Electronics.
نویسندگان
چکیده
Hybrid 3D printing is a new method for producing soft electronics that combines direct ink writing of conductive and dielectric elastomeric materials with automated pick-and-place of surface mount electronic components within an integrated additive manufacturing platform. Using this approach, insulating matrix and conductive electrode inks are directly printed in specific layouts. Passive and active electrical components are then integrated to produce the desired electronic circuitry by using an empty nozzle (in vacuum-on mode) to pick up individual components, place them onto the substrate, and then deposit them (in vacuum-off mode) in the desired location. The components are then interconnected via printed conductive traces to yield soft electronic devices that may find potential application in wearable electronics, soft robotics, and biomedical devices.
منابع مشابه
Three-Dimensional-Printed Carnivorous Plant with Snap Trap
Three-dimensional (3D) printing has a variety of applications, from efficient iterations of engineering designs to fabrication of tissues for regenerative medicine. In soft robotics, 3D-printed functional materials can be used to mimic biological functions. Soft robotics overcomes some of the limitations of traditional rigid-body robotics through the ability to conform to different shapes and t...
متن کاملElectrical Energy Demand Modeling of 3D Printing Technology for Sustainable Manufacture
The advent of 3D printers has been embraced globally within few years of its emergence. The surge in the acceptability of rapid manufacturing RM technology can be attributed to the depletion and cost of natural resources, waste reduction and sustainability criterion of manufactured parts. This rapidly evolving 3D printing technologies is predicted to grow exponentially especially for the manufa...
متن کاملBioprinting in Vascularization Strategies
Three-dimensional (3D) printing technology has revolutionized tissue engineering field because of its excellent potential of accurately positioning cell-laden constructs. One of the main challenges in the formation of functional engineered tissues is the lack of an efficient and extensive network of microvessels to support cell viability. By printing vascular cells and appropriate biomaterials,...
متن کاملاستفاده از فنّاوریهای نمونهسازی سریع در بازسازی بخشهای مفقود آثار شیشهای با رویکرد استفاده در شیشههای تاریخی
Abstract Although nowadays the advancements in technologies and preservation methods have led to effective conservation of historical and ancient glass works, it is still necessary to develop much less-destructive methods in conservation practices. Rapid prototyping technique (RPT) in recent years has been increasingly implemented in Engineering, Medical, Industrial Design and Architecture fie...
متن کاملRapid Fabrication of Soft, Multilayered Electronics for Wearable Biomonitoring
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1 wileyonlinelibrary.com monitoring of physiological signals, electronic skin for data entry, and skinmounted sensors for joint proprioception and motion capture.[3–7] The ability for these electronics to bend, twist, and stretch is accomplished by using soft elastomers as a carrier medium for deterministically patterned metal wiring,[8] percola...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced materials
دوره 29 40 شماره
صفحات -
تاریخ انتشار 2017